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Overview

• This lecture will cover

– shared variables model
• threads
• synchronisation
• shared and private data

– A very brief introduction to OpenMP
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Shared Variables Model

• Shared variable programming model is based on the notion of threads
– threads are like processes, except that threads can share memory with 

each other (as well as having private memory)

• Shared data can be accessed by all threads

• Private data can only be accessed by the owning thread

• Different threads can follow different flows of control through the same 
program

– details of thread/process relationship is very OS dependent
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Threads

Thread 1 Thread 2 Thread 3

PC PC PCPrivate data Private data Private data

Shared data
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More About Threads

• Often uses SPMD
– all threads execute same program
– each thread has its own identifier

• Usually run one thread per processor
– but could be more

• Threads communicate with each other only via shared data (no messages!)
– thread 1 writes a value to a shared variable A
– thread 2 can then read the value from A
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Thread 1 Thread 2
mya=23

mya=a+1
Program

a=mya

Thread Communication

Private
data

23

23 24

Shared
data
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Synchronisation

• Threads execute their programs asynchronously

• Writes and reads of shared data are always non-blocking
– need some mechanisms to ensure that these actions occur in the correct 

order

• In previous example
– write of a must occur before the read
– may also require read before write
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Synchronisation Concepts

• Most common constructs are:

– Master section
• a section of code executed by one thread only
• e.g. initialisation, writing a file

– Barrier
• all threads must arrive at a barrier before any thread can proceed past it
• e.g. delimiting phases of computation (e.g. a timestep)

– Critical section
• only one thread at a time can enter a section of code
• e.g. modification of shared variables



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

9

Summary of Shared Variables

• Shared Variables
– code is executed by independent threads
– each can access the same memory space
– can have private data as well
– need synchronization to ensure correctness
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Message Passing compared to Shared Variables

• Maps closely to highly scalable architectures.

• Can be easier to debug 
– Harder to induce non-deterministic behaviour
– But far from impossible

• Easier to find causes of poor performance (communication is explicit)

• Can overlap communication and computation

• Naturally minimises synchronisation
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Shared Variables Compared to Message Passing
• Easier to program than message passing

– Maybe ….

• Implementation can be incremental
– More easily than message passing 

• No message start-up costs as no messages
– But shared memory can mean that loads and stores become very 

expensive
– False sharing
– Extra synchronization

• Can cope with irregular / data dependent communication patterns 

• Load balancing more straightforward
– Finer grained parallelism more straightforward

• More often that not run serial it really is a serial code
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But we need more

Shared variables allow a very simple communication method, you simply 
assign as you want. However How to decide which thread does which 
work? In message passing this is simple – you can only work on your own 
data. For threads we could

• Let the compiler decide by itself
– In practice does not very successful. It is very difficult to work out all data 

dependencies:

• Give the compiler hints
– E.g. tell it in the above that indx( i ) contains unique values
– This is where OpenMP comes in
– c.f. vectorisation ( if you remember that …. )
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Brief history of OpenMP

• Historical lack of standardisation in shared memory directives. Each vendor 
did their own thing.

• Previous attempt (ANSI X3H5, based on work of Parallel Computing forum) 
failed due to political reasons and lack of vendor interest.

• OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now also 
supported by HP, Sun and ASCI programme.

• OpenMP Fortran standard released October 1997, minor revision (1.1) in
November 1999. Major revision (2.0) in November 2000.

• OpenMP C/C++ standard released October 1998.
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Overview of OpenMP

• OpenMP is a set of extensions to Fortran and C/C++ which implements the 
shared variables model.

• Based on compiler directives, together with library routines and environment 
variables. 

• Available on most single address space machines. 

• Industry standard supported by most major vendors. 
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Directives and sentinels

• A directive is a special line of source code with meaning only to a compiler 
that understands it. 

• A directive is distinguished by a sentinel at the start of the line.

• OpenMP sentinels are:

– Fortran: !$OMP (or C$OMP or *$OMP)

– C/C++: #pragma omp
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Parallel region
• The parallel region is the basic parallel construct in OpenMP. 

• A parallel region defines a section of a program.

• Program begins execution on a single thread (the master thread).

• When the first parallel region is encountered, the master thread creates a 
team of threads. (Fork/join model)

– Typically how many set by the OMP_NUMTHREADS environment variable

• Every thread executes the statements which are inside the parallel region

• At the end of the parallel region, the master thread waits for the other 
threads to finish, and continues executing the next statements

– Note implied synchronization
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Parallel region
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Shared and private data

• Inside a parallel region, variables can either be shared or private.

• All threads see the same copy of shared variables.

• All threads can read or write shared variables.

• Each thread has its own copy of private variables: these are invisible to 
other threads.  

• A private variable can only be read or written by its own thread.
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Parallel loops

• Loops are the main source of parallelism in many applications.

• If the iterations of a loop are independent (can be done in any order) then 
we can share out the iterations between different threads. 

• e.g. if we have two threads and the loop                    
do i = 1, 100
a(i) = a(i) + b(i) 

end do

we could do iteration 1-50 on one thread and iterations 51-100 on the other. 

• N.B. It is up to YOU to ensure the iterations are independent, NOT the 
compiler     
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Synchronisation

• Need to ensure that actions on shared variables occur in the correct order: 
e.g. 

thread 1 must write variable A before thread 2 reads it, 
or

thread 1 must read variable A before thread 2 writes it. 

• Note that updates to shared variables  (e.g. a = a + 1) are not atomic! If 
two threads try to do this at the same time, one of the updates may get 
overwritten.

• And it is up to YOU to ensure this
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Synchronisation example
Thread 1 Thread 2
load a
add a 1
store a

load a
add a 1
store a

Program

Private
data

10

10

1011 11

1111
Shared
data
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Reductions

• A reduction produces a single value from associative operations such as 
addition, multiplication, max, min, and, or. 

• For example:
b = 0;
for (i=0; i<n; i++)

b = b + a(i);

• Allowing only one thread at a time to update b would remove all 
parallelism.

• Instead, each thread can accumulate its own private copy, then these 
copies are reduced to give final result.
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Parallel region directive

• Code within a parallel region is executed by all threads. 
• Syntax:

Fortran:   !$OMP PARALLEL
block

!$OMP END PARALLEL 

C/C++:    #pragma omp parallel

{
block

}
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Parallel region directive (cont)

Example:

call fred()
!$OMP PARALLEL 

call billy()
!$OMP END PARALLEL 

call daisy()
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Useful functions

• Often useful to find out number of threads being used.
– Fortran:

• INTEGER FUNCTION OMP_GET_NUM_THREADS()

– C/C++: 
• #include <omp.h>

int omp_get_num_threads(void);

• Note: returns 1 if called outside parallel region!
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Useful functions (cont)

• Also useful to find out number of the executing thread.
– Fortran: 

• INTEGER FUNCTION OMP_GET_THREAD_NUM()

– C/C++:
• #include <omp.h> 

int omp_get_thread_num(void) 

• Takes values between 0 and OMP_GET_NUM_THREADS() - 1
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Clauses

• Specify additional information in the parallel region directive through 
clauses:

– Fortran : 
• !$OMP PARALLEL [clauses]

– C/C++:   
• #pragma omp parallel [clauses]

• Clauses are comma or space separated in Fortran, space separated in 
C/C++. 
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Shared and private variables

• Inside a parallel region, variables can be either shared (all threads see 
same copy) or private (each thread has private copy).

• Shared, private and default clauses
– Fortran: 

• SHARED(list)
• PRIVATE(list) 
• DEFAULT(SHARED|PRIVATE|NONE)

– C/C++:  
• shared(list)
• private(list) 
• default(shared|none)

– Strongly recommend default(none)
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Shared and private (cont)

Example: each thread initialises its own column of a shared array:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N) 
myid = omp_get_thread_num() + 1 
do i = 1,n 

a(i,myid) = 1.0
end do

!$OMP END PARALLEL

1 2 3 4
myid

i
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Reductions

• A reduction produces a single value from associative operations such as 
addition, multiplication,max, min, and, or.

• Would like each thread to reduce into a private copy, then reduce all these 
to give final result.

• Use REDUCTION clause:
– Fortran: REDUCTION(op:list)
– C/C++: reduction(op:list)

• N.B. Cannot have reduction arrays, only scalars or array elements! 
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Reductions (cont.) 

Example: 

!$OMP PARALLEL DEFAULT(NONE), REDUCTION(+:B),
!$OMP& PRIVATE(I,MYID), SHARED(C,N)

myid = omp_get_thread_num() + 1 
do i = 1,n 

b = b + c(i,myid) 
end do

!$OMP END PARALLEL 
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Work sharing directives

• Directives which appear inside a parallel region and indicate how work should be 
shared out between threads

– Parallel do/for loops
– Parallel sections
– ‘One thread only’ directives 
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Parallel do loops

• Loops are the most common source of parallelism in most codes. 
Parallel loop directives are therefore very important!

• A parallel do/for loop divides up the iterations of the loop between 
threads.



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

34

Parallel do/for loops (cont)

Syntax:
Fortran:

!$OMP DO [clauses]
do loop

!$OMP END DO

C/C++:       
#pragma omp for [clauses]

for loop 
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Parallel do/for loops (cont)

• With no additional clauses, the DO/FOR directive will usually 
partition the iterations as equally as possible between the threads.

• However, this is implementation dependent, and there is still some 
ambiguity: e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 
3+2+2
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Parallel do/for loops (cont)
• If you tell the compiler that the loop should be parallelised it will parallelise it !

– It is up to you to be sure
– You may have more information than the compiler can see, e.g. an indexing 

array does not have repeated values

• How can you tell if a loop is parallel or not?
– Useful test: if the loop gives the same answers if it is run in reverse order, 

then it is almost certainly parallel

• Jumps out of the loop are not permitted. 
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Parallel do/for loops (cont)

1.
do i=2,n

a(i)=2*a(i-1)         
end do 

2.
do i=1,n 

b(i)= (a(i)-a(i-1))*0.5
end do 
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Parallel do loops (example)

Example:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I),

!$OMP& SHARED(A,B,N)

!$OMP DO 
do i=1,n

b(i) = (a(i)-a(i-1))*0.5
end do 

!$OMP END DO
!$OMP END PARALLEL
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SCHEDULE clause

• The SCHEDULE clause gives a variety of options for specifying which loops 
iterations are executed by which thread. 

• Syntax:
– Fortran:  

• SCHEDULE (kind[, chunksize])
– C/C++:   

• schedule (kind[, chunksize])
– where kind is one of STATIC, DYNAMIC, GUIDED or RUNTIME and 

chunksize is an integer expression with positive value.

• E.g. !$OMP DO SCHEDULE(DYNAMIC,4)
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Synchronization

Recall:

• Need to synchronise actions on shared variables. 

• Need to respect dependencies.  

• Need to protect updates to shared variables (not atomic by default) 
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BARRIER directive

• No thread can proceed past a barrier until all the other threads have arrived.
•
• Note that there is an implicit barrier at the end of DO/FOR, SECTIONS and 

SINGLE directives. 

• Syntax:
– Fortran: 

• !$OMP BARRIER

– C/C++: 
• #pragma omp barrier

• Either all threads or none must encounter the barrier: otherwise
DEADLOCK!!
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BARRIER directive (cont)

Example:

!$OMP PARALLEL DEFAULT(NONE), PRIVATE(I,MYID),
!$OMP& SHARED(A,B,C,NEIGHB)

myid = omp_get_thread_num()
a(myid) = a(myid)*3.5 

!$OMP BARRIER 
b(myid) = a(neighb(myid)) + c

!$OMP END PARALLEL

• Barrier required to force synchronisation on a



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

43

Critical sections

• A critical section is a block of code which can be executed by only one 
thread at a time. 

• Can be used to protect updates to shared variables.

• The CRITICAL directive allows critical sections to be named. 

• If one thread is in a critical section with a given name, no other thread may 
be in a critical section with the same name, though they can be in critical 
sections with other names. 
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CRITICAL directive

• Syntax:
– Fortran: 

• !$OMP CRITICAL [( name )]
block

!$OMP END CRITICAL [( name )]
– C/C++:  

• #pragma omp critical [( name )]
structured block 

• In Fortran, the names on the directive pair must match. 

• If the name is omitted, a null name is assumed (all unnamed critical 
sections effectively have the same null name). 
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CRITICAL directive (cont)
Example:

!$OMP PARALLEL DEFAULT(NONE),
!$OMP& SHARED(STACK),PRIVATE(INEXT,INEW)
!$OMP CRITICAL (STACKPROT)

inext = getnext(stack)
!$OMP END CRITICAL (STACKPROT)

call work(inext,inew)
!$OMP CRITICAL (STACKPROT)

if (inew .gt. 0) call putnew(inew,stack)
!$OMP END CRITICAL (STACKPROT)
!$OMP END PARALLEL
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Other features
• Loads of other clauses on the directives so far considered
• Atomic directive: Ensure only one thread updates a global variable
• THREADPRIVATE directive: private copies of global variables.
• NOWAIT clause to suppress barriers 
• Lock routines.
• Ordered sections in parallel loops. 
• Directives can be orphaned - they can appear in subroutines called from inside 

a parallel region.
• Environment variables for setting number of threads, etc.
• Nested parallelism. 
• Conditional compilation. 

…….
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OpenMP resources
• Official web site:     www.openmp.org

– Language specifications, links to compilers and tools, mailing list.

• Kuck and Associates:   www.kai.com
– Compiler and tool vendors

• Microbenchmarks: www.epcc.ed.ac.uk/research/openmpbench

• Book: “Parallel Programming in OpenMP”, Dagum et. al., Academic Press, 
ISBN 1558606718.
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