
Computational Science &
Engineering DepartmentCSE

Parallel Algorithms on a cluster of PCs

Ian Bush
Computational Science & Engineering Department

Daresbury Laboratory
I.J.Bush@dl.ac.uk

(With thanks to Lorna Smith and Mark Bull at EPCC)

mailto:I.J.Bush@dl.ac.uk

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

2

Overview

• This lecture will cover

– shared variables model
• threads
• synchronisation
• shared and private data

– A very brief introduction to OpenMP

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

3

Shared Variables Model

• Shared variable programming model is based on the notion of threads
– threads are like processes, except that threads can share memory with

each other (as well as having private memory)

• Shared data can be accessed by all threads

• Private data can only be accessed by the owning thread

• Different threads can follow different flows of control through the same
program

– details of thread/process relationship is very OS dependent

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

4

Threads

Thread 1 Thread 2 Thread 3

PC PC PCPrivate data Private data Private data

Shared data

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

5

More About Threads

• Often uses SPMD
– all threads execute same program
– each thread has its own identifier

• Usually run one thread per processor
– but could be more

• Threads communicate with each other only via shared data (no messages!)
– thread 1 writes a value to a shared variable A
– thread 2 can then read the value from A

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

6

Thread 1 Thread 2
mya=23

mya=a+1
Program

a=mya

Thread Communication

Private
data

23

23 24

Shared
data

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

7

Synchronisation

• Threads execute their programs asynchronously

• Writes and reads of shared data are always non-blocking
– need some mechanisms to ensure that these actions occur in the correct

order

• In previous example
– write of a must occur before the read
– may also require read before write

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

8

Synchronisation Concepts

• Most common constructs are:

– Master section
• a section of code executed by one thread only
• e.g. initialisation, writing a file

– Barrier
• all threads must arrive at a barrier before any thread can proceed past it
• e.g. delimiting phases of computation (e.g. a timestep)

– Critical section
• only one thread at a time can enter a section of code
• e.g. modification of shared variables

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

9

Summary of Shared Variables

• Shared Variables
– code is executed by independent threads
– each can access the same memory space
– can have private data as well
– need synchronization to ensure correctness

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

10

Message Passing compared to Shared Variables

• Maps closely to highly scalable architectures.

• Can be easier to debug
– Harder to induce non-deterministic behaviour
– But far from impossible

• Easier to find causes of poor performance (communication is explicit)

• Can overlap communication and computation

• Naturally minimises synchronisation

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

11

Shared Variables Compared to Message Passing
• Easier to program than message passing

– Maybe ….

• Implementation can be incremental
– More easily than message passing

• No message start-up costs as no messages
– But shared memory can mean that loads and stores become very

expensive
– False sharing
– Extra synchronization

• Can cope with irregular / data dependent communication patterns

• Load balancing more straightforward
– Finer grained parallelism more straightforward

• More often that not run serial it really is a serial code

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

12

But we need more

Shared variables allow a very simple communication method, you simply
assign as you want. However How to decide which thread does which
work? In message passing this is simple – you can only work on your own
data. For threads we could

• Let the compiler decide by itself
– In practice does not very successful. It is very difficult to work out all data

dependencies:

• Give the compiler hints
– E.g. tell it in the above that indx(i) contains unique values
– This is where OpenMP comes in
– c.f. vectorisation (if you remember that ….)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

13

Brief history of OpenMP

• Historical lack of standardisation in shared memory directives. Each vendor
did their own thing.

• Previous attempt (ANSI X3H5, based on work of Parallel Computing forum)
failed due to political reasons and lack of vendor interest.

• OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now also
supported by HP, Sun and ASCI programme.

• OpenMP Fortran standard released October 1997, minor revision (1.1) in
November 1999. Major revision (2.0) in November 2000.

• OpenMP C/C++ standard released October 1998.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

14

Overview of OpenMP

• OpenMP is a set of extensions to Fortran and C/C++ which implements the
shared variables model.

• Based on compiler directives, together with library routines and environment
variables.

• Available on most single address space machines.

• Industry standard supported by most major vendors.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

15

Directives and sentinels

• A directive is a special line of source code with meaning only to a compiler
that understands it.

• A directive is distinguished by a sentinel at the start of the line.

• OpenMP sentinels are:

– Fortran: !$OMP (or C$OMP or *$OMP)

– C/C++: #pragma omp

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

16

Parallel region
• The parallel region is the basic parallel construct in OpenMP.

• A parallel region defines a section of a program.

• Program begins execution on a single thread (the master thread).

• When the first parallel region is encountered, the master thread creates a
team of threads. (Fork/join model)

– Typically how many set by the OMP_NUMTHREADS environment variable

• Every thread executes the statements which are inside the parallel region

• At the end of the parallel region, the master thread waits for the other
threads to finish, and continues executing the next statements

– Note implied synchronization

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

17

Parallel region

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

18

Shared and private data

• Inside a parallel region, variables can either be shared or private.

• All threads see the same copy of shared variables.

• All threads can read or write shared variables.

• Each thread has its own copy of private variables: these are invisible to
other threads.

• A private variable can only be read or written by its own thread.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

19

Parallel loops

• Loops are the main source of parallelism in many applications.

• If the iterations of a loop are independent (can be done in any order) then
we can share out the iterations between different threads.

• e.g. if we have two threads and the loop
do i = 1, 100
a(i) = a(i) + b(i)

end do

we could do iteration 1-50 on one thread and iterations 51-100 on the other.

• N.B. It is up to YOU to ensure the iterations are independent, NOT the
compiler

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

20

Synchronisation

• Need to ensure that actions on shared variables occur in the correct order:
e.g.

thread 1 must write variable A before thread 2 reads it,
or

thread 1 must read variable A before thread 2 writes it.

• Note that updates to shared variables (e.g. a = a + 1) are not atomic! If
two threads try to do this at the same time, one of the updates may get
overwritten.

• And it is up to YOU to ensure this

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

21

Synchronisation example
Thread 1 Thread 2
load a
add a 1
store a

load a
add a 1
store a

Program

Private
data

10

10

1011 11

1111
Shared
data

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

22

Reductions

• A reduction produces a single value from associative operations such as
addition, multiplication, max, min, and, or.

• For example:
b = 0;
for (i=0; i<n; i++)

b = b + a(i);

• Allowing only one thread at a time to update b would remove all
parallelism.

• Instead, each thread can accumulate its own private copy, then these
copies are reduced to give final result.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

23

Parallel region directive

• Code within a parallel region is executed by all threads.
• Syntax:

Fortran: !$OMP PARALLEL
block

!$OMP END PARALLEL

C/C++: #pragma omp parallel

{
block

}

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

24

Parallel region directive (cont)

Example:

call fred()
!$OMP PARALLEL

call billy()
!$OMP END PARALLEL

call daisy()

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

25

Useful functions

• Often useful to find out number of threads being used.
– Fortran:

• INTEGER FUNCTION OMP_GET_NUM_THREADS()

– C/C++:
• #include <omp.h>

int omp_get_num_threads(void);

• Note: returns 1 if called outside parallel region!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

26

Useful functions (cont)

• Also useful to find out number of the executing thread.
– Fortran:

• INTEGER FUNCTION OMP_GET_THREAD_NUM()

– C/C++:
• #include <omp.h>

int omp_get_thread_num(void)

• Takes values between 0 and OMP_GET_NUM_THREADS() - 1

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

27

Clauses

• Specify additional information in the parallel region directive through
clauses:

– Fortran :
• !$OMP PARALLEL [clauses]

– C/C++:
• #pragma omp parallel [clauses]

• Clauses are comma or space separated in Fortran, space separated in
C/C++.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

28

Shared and private variables

• Inside a parallel region, variables can be either shared (all threads see
same copy) or private (each thread has private copy).

• Shared, private and default clauses
– Fortran:

• SHARED(list)
• PRIVATE(list)
• DEFAULT(SHARED|PRIVATE|NONE)

– C/C++:
• shared(list)
• private(list)
• default(shared|none)

– Strongly recommend default(none)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

29

Shared and private (cont)

Example: each thread initialises its own column of a shared array:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)
myid = omp_get_thread_num() + 1
do i = 1,n

a(i,myid) = 1.0
end do

!$OMP END PARALLEL

1 2 3 4
myid

i

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

30

Reductions

• A reduction produces a single value from associative operations such as
addition, multiplication,max, min, and, or.

• Would like each thread to reduce into a private copy, then reduce all these
to give final result.

• Use REDUCTION clause:
– Fortran: REDUCTION(op:list)
– C/C++: reduction(op:list)

• N.B. Cannot have reduction arrays, only scalars or array elements!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

31

Reductions (cont.)

Example:

!$OMP PARALLEL DEFAULT(NONE), REDUCTION(+:B),
!$OMP& PRIVATE(I,MYID), SHARED(C,N)

myid = omp_get_thread_num() + 1
do i = 1,n

b = b + c(i,myid)
end do

!$OMP END PARALLEL

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

32

Work sharing directives

• Directives which appear inside a parallel region and indicate how work should be
shared out between threads

– Parallel do/for loops
– Parallel sections
– ‘One thread only’ directives

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

33

Parallel do loops

• Loops are the most common source of parallelism in most codes.
Parallel loop directives are therefore very important!

• A parallel do/for loop divides up the iterations of the loop between
threads.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

34

Parallel do/for loops (cont)

Syntax:
Fortran:

!$OMP DO [clauses]
do loop

!$OMP END DO

C/C++:
#pragma omp for [clauses]

for loop

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

35

Parallel do/for loops (cont)

• With no additional clauses, the DO/FOR directive will usually
partition the iterations as equally as possible between the threads.

• However, this is implementation dependent, and there is still some
ambiguity: e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or
3+2+2

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

36

Parallel do/for loops (cont)
• If you tell the compiler that the loop should be parallelised it will parallelise it !

– It is up to you to be sure
– You may have more information than the compiler can see, e.g. an indexing

array does not have repeated values

• How can you tell if a loop is parallel or not?
– Useful test: if the loop gives the same answers if it is run in reverse order,

then it is almost certainly parallel

• Jumps out of the loop are not permitted.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

37

Parallel do/for loops (cont)

1.
do i=2,n

a(i)=2*a(i-1)
end do

2.
do i=1,n

b(i)= (a(i)-a(i-1))*0.5
end do

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

38

Parallel do loops (example)

Example:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I),

!$OMP& SHARED(A,B,N)

!$OMP DO
do i=1,n

b(i) = (a(i)-a(i-1))*0.5
end do

!$OMP END DO
!$OMP END PARALLEL

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

39

SCHEDULE clause

• The SCHEDULE clause gives a variety of options for specifying which loops
iterations are executed by which thread.

• Syntax:
– Fortran:

• SCHEDULE (kind[, chunksize])
– C/C++:

• schedule (kind[, chunksize])
– where kind is one of STATIC, DYNAMIC, GUIDED or RUNTIME and

chunksize is an integer expression with positive value.

• E.g. !$OMP DO SCHEDULE(DYNAMIC,4)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

40

Synchronization

Recall:

• Need to synchronise actions on shared variables.

• Need to respect dependencies.

• Need to protect updates to shared variables (not atomic by default)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

41

BARRIER directive

• No thread can proceed past a barrier until all the other threads have arrived.
•
• Note that there is an implicit barrier at the end of DO/FOR, SECTIONS and

SINGLE directives.

• Syntax:
– Fortran:

• !$OMP BARRIER

– C/C++:
• #pragma omp barrier

• Either all threads or none must encounter the barrier: otherwise
DEADLOCK!!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

42

BARRIER directive (cont)

Example:

!$OMP PARALLEL DEFAULT(NONE), PRIVATE(I,MYID),
!$OMP& SHARED(A,B,C,NEIGHB)

myid = omp_get_thread_num()
a(myid) = a(myid)*3.5

!$OMP BARRIER
b(myid) = a(neighb(myid)) + c

!$OMP END PARALLEL

• Barrier required to force synchronisation on a

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

43

Critical sections

• A critical section is a block of code which can be executed by only one
thread at a time.

• Can be used to protect updates to shared variables.

• The CRITICAL directive allows critical sections to be named.

• If one thread is in a critical section with a given name, no other thread may
be in a critical section with the same name, though they can be in critical
sections with other names.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

44

CRITICAL directive

• Syntax:
– Fortran:

• !$OMP CRITICAL [(name)]
block

!$OMP END CRITICAL [(name)]
– C/C++:

• #pragma omp critical [(name)]
structured block

• In Fortran, the names on the directive pair must match.

• If the name is omitted, a null name is assumed (all unnamed critical
sections effectively have the same null name).

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

45

CRITICAL directive (cont)
Example:

!$OMP PARALLEL DEFAULT(NONE),
!$OMP& SHARED(STACK),PRIVATE(INEXT,INEW)
!$OMP CRITICAL (STACKPROT)

inext = getnext(stack)
!$OMP END CRITICAL (STACKPROT)

call work(inext,inew)
!$OMP CRITICAL (STACKPROT)

if (inew .gt. 0) call putnew(inew,stack)
!$OMP END CRITICAL (STACKPROT)
!$OMP END PARALLEL

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

46

Other features
• Loads of other clauses on the directives so far considered
• Atomic directive: Ensure only one thread updates a global variable
• THREADPRIVATE directive: private copies of global variables.
• NOWAIT clause to suppress barriers
• Lock routines.
• Ordered sections in parallel loops.
• Directives can be orphaned - they can appear in subroutines called from inside

a parallel region.
• Environment variables for setting number of threads, etc.
• Nested parallelism.
• Conditional compilation.

…….

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

47

OpenMP resources
• Official web site: www.openmp.org

– Language specifications, links to compilers and tools, mailing list.

• Kuck and Associates: www.kai.com
– Compiler and tool vendors

• Microbenchmarks: www.epcc.ed.ac.uk/research/openmpbench

• Book: “Parallel Programming in OpenMP”, Dagum et. al., Academic Press,
ISBN 1558606718.

	Overview
	Shared Variables Model
	Threads
	More About Threads
	Thread Communication
	Synchronisation
	Synchronisation Concepts
	Summary of Shared Variables
	Message Passing compared to Shared Variables
	Shared Variables Compared to Message Passing
	But we need more
	Brief history of OpenMP
	Overview of OpenMP
	Directives and sentinels
	Parallel region
	Parallel region
	Shared and private data
	Parallel loops
	Synchronisation
	Synchronisation example
	Reductions
	Parallel region directive
	Parallel region directive (cont)
	Useful functions
	Useful functions (cont)
	Clauses
	Shared and private variables
	Shared and private (cont)
	Reductions
	Reductions (cont.)
	Work sharing directives
	Parallel do loops
	Parallel do/for loops (cont)
	Parallel do/for loops (cont)
	Parallel do/for loops (cont)
	Parallel do/for loops (cont)
	Parallel do loops (example)
	SCHEDULE clause
	Synchronization
	BARRIER directive
	BARRIER directive (cont)
	Critical sections
	CRITICAL directive
	CRITICAL directive (cont)
	Other features
	OpenMP resources

