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What is nuclear astrophysics?

Nuclear astrophysics aims at understanding the nuclear processes
that take place in the universe. These nuclear processes generate
energy in stars and contribute to the nucleosynthesis of the elements.

3. The solar abundance distribution
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N. Grevesse and A. J. Sauval, Space Science Reviews 85, 161
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Abundance

Nuclear processes conserve number of nucleons:

n =
∑

i

niAi
n number of nucleons per cm3, n ≈ ρ

mu
= ρNA

ni number of nuclear species i

Abundance: Yi =
ni

n
⇒ ni = ρNAYi (changes in density are factored out)

Mass fraction: Xi =
nimi

ρ
=

niAimu

ρ
= YiAi

From conservation of number of nucleons:
∑

i YiAi =
∑

i Xi = 1
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Electron Abundance

From charge neutrality:

ne =
∑

i

niZi = n
∑

i

YiZi

Introducing: Ye =
ne

n

Ye =
∑

YiZi

In general one cannot define a lepton abundance. Lepton number is
not locally conserved (neutrinos leave the system).
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Hoyle’s cosmic cycle
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Nucleosynthesis processes

In 1957: Burbidge, Burbidge, Fowler, Hoyle, [Rev. Mod. Phys. 29, 547
(1957)] suggested the synthesis of the elements in stars.

neutrons

protons

rp processrp process

r processr process

Mass known
Half-life known
nothing known

s processs process

stellar burningstellar burning

Big BangBig Bang

p processp process

SupernovaeSupernovae

Cosmic RaysCosmic Rays

H(1)

Fe (26)

Sn (50)
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Star formation

Stars are formed from the
contraction of molecular clouds
due to their own gravity.
Contraction increases
temperature and eventually
nuclear fusion reactions begin.
A star is born.
Contraction time depends on
mass: 10 millions years for a
star with the mass of the Sun;
100,000 years for a star
11 times the mass of the Sun.

The evolution of a Star is governed by gravity
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What is a Star?

in
equilibrium: gravity
↔ pressure

A star is a self-luminous gaseous sphere.
Stars produce energy by nuclear fusion reactions. A star is
a self-regulated nuclear reactor.
Gravitational collapse is balanced by pressure generated
from nuclear reactions:
dFgrav = −G m(r)dm

r2 = dFpress = [(P(r + dr)− P(r))dA

Further, equation needed to describe the pressure as
function of density, composition (nuclear reactions),
temperature (heat transport)→ Equation of State (EOS)

Star evolution, lifetime and death depends on mass. Two
groups:

Stars with masses less than 8 solar masses
(white dwarfs)
Stars with masses greater than 8 solar
masses (supernova explosions)
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Types of processes

Transfer (strong interaction)

15N(p, α)12C, σ ' 0.5 b at E = 2.0 MeV

Capture (electromagnetic interaction)

3He(α, γ)7Be, σ ' 10−6 b at E = 2.0 MeV

Weak (weak interaction)

p(p,e+ν)d , σ ' 10−20 b at E = 2.0 MeV
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Reaction rates

Basic ingredient to determine the change in composition are the reaction
rates:
Suppose a nuclear reaction:

1 + 2� 3 + 4

dN1

dt
= r34 − r12

r number of reactions per cubic centimeter and per second.
In these lectures we will discuss how to determine the different rates. Let us
consider first the equilibrium situation: dNi

dt = 0
This occurs at very high temperatures (T & 5 GK = 430 keV) when the
reactions proceed much faster than the dynamical evolution of the system
(Big Bang, supernovae,. . . ).
In equilibrium it suffices to know the chemical potentials

µ1 + µ2 = µ3 + µ4
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Nuclear Statistical Equilibrium

Processes mediated by the strong and electromagnetic interaction are
in equilibrium. Normally neutrinos can escape and weak equilibrium
cannot be achieved.
Processes of creation and destruction are in equilibrium

(Z ,A)� Zp + Nn + γ′s

Composition determined by (T , ρ,Ye). Entropy (∼ T 3/ρ) is the main
parameter determining the abundances. High entropies (low ρ, high T )
favor free nucleons. Small entropies (high ρ, low T ) favor bound nuclei.
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Nuclear Statistical Equilibrium

During stellar burning, NSE is achieved at temperatures in access of
about (3− 4)109 K (∼ 250− 350 keV). At such temperatures reactions
via the strong and electromagnetic interaction proceed in both
directions as temperature is high enough

to overcome Coulomb barrier
to dissociate nuclei by photons from the high-energy tail of the
Planck distribution
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Nuclear Statistical Equilibrium

Consequences:
All nuclei in the reaction network are connected to each other
Complete chemical equilibrium
There exist 2 ’outside’ constraints:

1 Mass conservation
2 Charge neutrality (Ye is fixed by environment)

The 2 conserved quantities imply 2 independent chemical potentials,
which are chosen as µp (protons) and µn (neutrons).
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Nuclear abundances in NSE

NSE implies:
µ(Z ,A) = Zµp + (A− Z )µN

with the chemical potentials given by (Boltzmann)

µ(Z ,A) = m(Z ,A)c2 + kT ln

[
n(Z ,A)

G(Z ,A)

(
2π~2

m(Z ,A)kT

)3/2]
and the partition function:

G(Z ,A) =
∑

i

(2Ji + 1)e−Ei/kT

Proton, neutron: G=2 (two spins!)
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Solution to NSE

Saha equation:

Y (Z ,A) =
G(Z ,A)A3/2

2A (ρNA)A−1Y Z
p Y N

n

(
2π~2

mukT

)3/2(A−1)

eEb(Z ,A)/kT

with Eb(Z ,A) = (Nmn + Zmp −M(Z ,A))c2

and the constraints∑
i YiAi = 1 (conservation number nucleons)∑
i YiZi = Ye (charge neutrality)

High density: favors large A (∼ ρ(A−1))
High temperature: favors light nuclei (∼ T−3/2(A−1))
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NSE: Nuclear composition during core-collapse
supernova.

presupernova stage
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Non-equilibrium: Reaction network

In astrophysical environments many reactions occur simultaneously.
This is called a reaction network. Nuclei can be produced and
destroyed by several reactions.
This leads to equations of the type:

dNa

dt
= −

∑
b

λbNa +
∑

b

λbNb −
∑
b,c,d

NaNb〈σv〉c,d +
∑
b,c,d

NcNd〈σv〉a,b

or

dYa

dt
= −

∑
b

λbYa+
∑

b

λbYb−NAρ
∑
b,c,d

YaYb〈σv〉c,d +NAρ
∑
b,c,d

YcYd〈σv〉a,b
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Transmission through barrier step

Consider a particle coming from −∞ and the barrier:
V (x) = 0 forx < 0 and V (x) = −V0 forx > 0.

The solutions are plane waves with k1 =
√

2mE
~ for x < 0 and

k2 =

√
2m(E+V0)

~ for x > 0.

x < 0: φ(x) = A1 exp{ik1x}+ B1 exp{−ik1x}
x > 0: φ(x) = A2 exp{ik2x}

At x = 0 the matching conditions for the wave functions and their
derivatives yield:
A1 + B1 = A2; A1 − B1 = k2

k1
A2.

This yields A2 = A1
2k1

k1+k2
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Transmission coefficient

The transmission coefficient defines the ratio of the transmitted flux to
the incoming flux.

T =
jout

jin
=

kout|φout|2

kin|φin|2

with j = ~k
m |φ|

2.
For the example follows:

T =
k2|A2|2

k1|A1|2
=

k24k2
1

(k1 + k2)2k1
=

4k1k2

(k1 + k2)2
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Transmission through constant barrier

Consider a barrier which is V (x) = +V0 for x1 < x < x2 = x1 + d .
The particle again comes from −∞ with energy E < V0.
The transmission coefficient can be calculated as:

T = [1 +
V 2

0

V 2
0 − (2E − V0)2

sinh2(k2d)]−1

with k2 =

√
2m(E−V0)

~ .

In the case k2d >> 1 the sinh function reduces to
sinh2(k2d) ≈ 1

4 exp{2k2d}.

Thus, T ∼ exp{−2
~
√

2m(V0 − E)d}.
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Coulomb potential

General potential V(x): numerical solution.

Often WKB approximation is sufficient. Example is the spherical
Coulomb potential V (r) = Z1Z2e2

r where one finds

T ≈ exp{−2
~

∫ r2

r1

√
2m(V (r)− E)dr} = exp{−2πη}

with the Sommerfeld parameter η =
√

µ
2E

Z1Z2e2

~ .
r1, r2 are the classical turning points.
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Total reaction cross section

The total reaction cross section is given by

σ =
π

k2
in

∑
l

(2l + 1)Tl

In astrophysical applications one is often interested in cross sections at
rather low energies. Then often only l = 0 partial waves (s-waves)
contribute noticeably to the cross section as the centrifugal barrier
reduces the transmission in other partial waves (Note, however,
resonances!).
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Total reaction cross section

1 step barrier (neutrons)

k1 =

√
2µE
~ ; k2 =

√
2µ(E+Q)

~ with E << Q
Then k2 roughly constant, k1 << k2 and Tl=0 = 4k1k2

(k1+k2)2 ≈ 4k1
k2

.

For the cross section follows σ = π
k2

1
4 k1

k2
∼ 1

k1
.

Indeed, σ ∼ 1√
E
∼ 1

v is a good approximation for low-energy
neutrons.

2 constant barrier (charged particles)
σ = π

k2
in

exp{−2πη} = ~2π
2µE exp{−2πη(E)}

Penetration through Coulomb barrier at low energies is extremely
energy-dependent. Some of this energy dependence is known
and can be factorized from the cross section. This leads to the
defnition of the

astrophysical S-factor S(E) = σ(E)E exp{2πη(E)}.

For non-resonant reactions, S(E) is a slowly varying function in E .
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Charged-particle cross section

Stars’ interior is a plasma made of charged particles (nuclei, electron).
Nuclear reactions proceed by tunnel effect. For p + p reaction Coulomb
barrier 550 keV, but the typical energy in the sun is only 1.35 keV.

cross section: σ(E) = 1
E S(E)e−2πη; η = Z1Z2e2

~

√
µ

2E = b
E1/2
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Astrophysical S factor

S factor allows accurate extrapolations to low energy.
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Stellar reaction rate
Consider Na and Nb particles per cubic centimeter of particle types a and b.
The rate of nuclear reactions is given by:

r = NaNbσ(v)v

In stellar environment the velocity (energy) of particles follows a thermal
distribution that depends on the type of particles.

Nuclei (Maxwell-Boltzmann): φ(v) = N4πv2 ` m
2πkT

´3/2 exp
“
−mv2

2kT

”
The product σv has to be averaged over the velocity distribution φ(v)

〈σv〉 =

∫ ∞
0

∫ ∞
0

φ(va)φ(vb)σ(v)vdvadvb

Changing to center-of-mass coordinates, integrating over the cm-velocity and
using E = µv2/2

〈σv〉 =

(
8
πµ

)1/2 1
(kT )3/2

∫ ∞
0

σ(E)E exp
(
− E

kT

)
dE
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Gamow window

Using definition of S factor:

〈σv〉 =

(
8
πµ

)1/2 1
(kT )3/2

∫ ∞
0

S(E) exp
[
− E

kT
− b

E1/2

]
dE
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Gamow window
Assuming that S factor is constant over the Gamow window and
approximating the integrand by a Gaussian one gets:

〈σv〉 =

(
2
µ

)1/2
∆

(kT )3/2 S(E0) exp
(
−3E0

kT

)

E0 = 1.22[keV](Z 2
1 Z 2

2µT 2
6 )1/3

∆ = 0.749[keV](Z 2
1 Z 2

2µT 5
6 )1/6

(Tx measures the temperature in 10x K.)
Examples for solar conditions:

reaction E0 [keV] ∆/2 [keV] Imax T dependence of 〈σv〉
p+p 5.9 3.2 1.1× 10−6 T 3.9

p+14N 26.5 6.8 1.8× 10−27 T 20

α+12C 56.0 9.8 3.0× 10−57 T 42

16O+16O 237.0 20.2 6.2× 10−239 T 182

It depends very sensitively on temperature!
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